

Coupled Heat Transfer Optimization Calculation of ABAQUS and DOT for Beam Blank Mold

Kun Xu (Ph. D. Student) & Prasanna Kumar (IIT)

Department of Mechanical & Industrial Engineering University of Illinois at Urbana-Champaign

Objective

• Use Abaqus to get the approximate uniform heat flux to match the experimental temperature results of thermocouples

• Compare experimental temperature data and numerical data under uniform heat flux and discuss the possible distribution of heat flux along the section perimeter in order to match measured temperature closely

• Coupled linear heat flux optimization calculation of Abaqus and for six sections along the casting direction

• Use interpolation to get the whole heat flux file for the mold, and compare the total heat loss with the experimental data

• Explain the difference of calculated and experimental total heat loss and possible way to handle the problem

Beam Blank Mold

Beam Blank Mold

Reheating

Casting

Semi-Finished

Final Product

University of Illinois at Urbana-Champaign

Rolling

3

•

4

Experimental Measurement using Mold Thermocouples

Conducted by SDI and Accumold

3 columns of 6 in "cove", 1 Column of 3 on flange tip: 21 TCs per broad face

2 Columns on narrow face, 3 on outside column, 2 in center column: 5 TCs on narrow face 47 total thermocouples

TCs drilled between water slots to 1/10" past tangent line through water slot closest to hot face (centered between slots) 1/8" diameter Cr-Al (K-type) TCs close contact fit (no thermal paste)

Kun Xu & Prasanna Kumar

5

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Material Properties & Water Heat Balance Measurements

A 992 structural steel: 0.071%C, 1.31Mn, 0.012Ph, 0.026S, 0.17%Si, 0.36Cu, 0.06%V, 0.02Nb, 0.0116%N, 0.0017%Al

	Water Flow	Inlet temp	Outlet temp	Flow velocity	Heat loss
	(kg/s)	(°C)	(°C)	(m/s)	$(10^{3}W)$
Front	43.34	31.87	34.91	9.73	551.3
Back	46.04	31.87	34.78	10.34	561.1
Left	14.77	31.87	37.23	7.79	331.8
Right	15.00	31.87	36.96	7.91	319.6
Total	119.16				1763.8

Copper thermal conductivity 350W/mK

Wide face: $T_{ref} = 33.35^{\circ}C$, h = 45kW/m²K Narrow face: $T_{ref} = 34.48^{\circ}C$, h = 34kW/m²K

University of Illinois at Urbana-Champaign

•

Note: mismatch on WF due to underprediction of heat flux there

Kun Xu & Prasanna Kumar

- 1. The accuracy of measure temperature is 0.5 F. Compared with the total water temperature rise 5F (wide face) and 9F (narrow face), the measured error of water temperature can be 5~10%.
- 2. After the mold heat ups, thermal expansion likely creates a small air gap between the mold and the thermocouples. This can cause a thermal resistance and a lower temperature at the thermocouple, relative to the adjacent copper wall that is being modeled. It appears that ~10°C temperature drop would explain the mismatch with the total heat loss.
- 3. For thermocouple near B, extra heat is likely lost by transmission of water around the TC which passes through the small hole. Thus, this TC is likely to experience a larger temperature drop than the others.

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Conclusions

- Coupled heat flux optimization calculation of ABAQUS / DOT or TmmFe can obtain the heat flux distribution to match measured mold temperatures
- Integration of heat flux curves are currently less than the total heat loss from the cooling water heat balance (37.6% error)
- Trends in heat flux, shell thickness and model calculations all agree: lower heat flux and shell thinning at: the shoulder region, flange offcorner and narrow face center
- The thermal resistance from the air gap between the thermocouple and mold needs to be considered in next modeling to match the total heat loss more closely
- It is recommended that future mold TC measurements use thermal paste to minimize the resistances

Kun Xu & Prasanna Kumar

23

Acknowledgements

Prof B.G.Thomas

Clayton Spangler, SDI and D. Lorento, Accumold

J. Dantzig, Design Optimization Tool

Continuous Casting Consortium

Thank you for attendance!

Metals Processing Simulation Lab

•

Kun Xu & Prasanna Kumar 25